Health for a grant in support of the purchase of a Bruker CCD SMART diffractometer (3S06GM0810225S1/M1HREV).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1124). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, M., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343.

Brown, H. C. (1975). Organic Synthesis via Boranes. New York: Wiley-Interscience.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1995). TEXSAN. Single Crystal Structure Analysis Software. Version 1.7-1. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Siemens (1994a). SMART. Version 4.021. Data Collection Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994b). SAINT. Version 4.021. Data Integration Sofiware. Sicmens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Soderquist, J. A. (1994). In Encyclopedia of Inorganic Chemistry, edited by R. B. King. London: J. Wiley \& Sons.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1998). C54, 1647-1649

o-Phenylenediamine Pyrocatechol Hemihydrate Complex

Shyamaprosad Goswami, ${ }^{a}$ Reshmi Mukherjee, ${ }^{b}$ Gur Dayal Nigam, ${ }^{\text {c }}$ Kandasamy Chinnakali ${ }^{d} \dagger$ and Hoong-Kun Fun ${ }^{d}$
${ }^{a}$ Department of Chemistry, Bengal Engineering College, Botanic Garden, Howrah 711103, India, ${ }^{b}$ Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India, ${ }^{\text {c Department of Physics and }}$ Meteorology, Indian Institute of Technology, Kharagpur 721302, West Bengal, India, and ${ }^{d} X$-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. E-mail: hkfun@usm.my

(Received 20 March 1998; accepted 8 May 1998)

Abstract

A well defined supramolecular structure, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}$.$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2} .0 .5 \mathrm{H}_{2} \mathrm{O}$, is generated by molecular recognition between pyrocatechol and o-phenylenediamine in the presence of water. They spontaneously self assemble

^[\dagger On leave from: Department of Physics, Anna University, Chennai 600 025, India.]

through a unique network of hydrogen bonds around a twofold axis.

Comment

The development of solid state structures which are able to exhibit new physical and chemical properties (Hanessian et al., 1994) is the basis of crystal engineering. The self-assembling complementarity of diamine/diol motifs provides convincing evidence that the engineering of highly organized supramolecular structures based on molecular recognition can now be extended to include 'weak' hydrogen-bonding interactions. The X-ray structure analysis of the title compound, (I), supports this viewpoint.

(1)

The asymmetric unit consists of one molecule each of o-phenylenediamine, pyrocatechol and water. In the crystal, the water molecules lie on the twofold axis and they are linked to the pyrocatechol molecules through an $\mathrm{O} 2-\mathrm{H} \cdots \mathrm{O} 3{ }^{\text {iii }}$ hydrogen bond (Table 3 and Fig. 2). The diamine molecules are connected to the water molecules by $\mathrm{O} 3-\mathrm{H} \cdots \mathrm{N} 2^{\text {iv }}$ hydrogen bonds between O 3 and $\mathrm{N} 2^{\mathrm{iv}}$. The diol and diamine molecules themselves are involved in $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds ($\mathrm{N} 2 \cdots \mathrm{O} 1$ and $\mathrm{N} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$). This hydrogen-bonded network forms a supramolecular structure around the twofold axis. The neighbouring molecular assemblies are interlinked by $\mathrm{Ol}-\mathrm{HlOl} \cdots \mathrm{Nl}^{\mathrm{ii}}$ hydrogen bonds. Due to the hydrogen bonding, both the N atoms and water O atoms exhibit full tetra-coordination. The hydrogen-bonded assembly in this structure is significantly different from the supramolecular helicate structures observed for the $1: 1$ complex of trans-1,2-diaminocyclohexane and (1S,2S)-trans-1,2-cyclohexanediol (Hanessian et al., 1994), which may be due to the presence of water molecules. The $\mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ lengths observed in this structure agree with the reported values (Allen et al., 1987). The dihedral angle between the mean planes through the diamine and diol moieties is $25.87(3)^{\circ}$. The

Fig. 1. The structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.
diamine and diol molecules translated one unit cell along the b direction are stacked stepwise without any $\pi-\pi$ stacking interactions with minimum short contacts for

Fig. 2. Hydrogen-bonding network viewed down the b axis.

Experimental

Single crystals were grown by slow evaporation of a $1: 1$ mixture of o-phenylenediamine and pyrocatechol in a chloroform and acetone solution.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} . \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2} .0 .5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=227.26$
Monoclinic
P2/c
$a=9.0498$ (2) \AA
$b=5.2275$ (1) \AA
$c=25.0771$ (2) \AA
$\beta=97.71^{\circ}$
$V=1175.62(4) \AA^{3}$
$Z=4$
$D_{x}=1.284 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens SMART diffractometer with CCD area detector
ω scans

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 4441 reflections
$\theta=1.31-33.1^{\circ}$
$\mu=0.091 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Thin plate
$0.68 \times 0.44 \times 0.08 \mathrm{~mm}$
Colourless

2016 reflections with

$$
\begin{gathered}
I>2 \sigma(I) \\
R_{\text {int }}=0.024 \\
\theta_{\text {max }}=27.50^{\circ}
\end{gathered}
$$

Absorption correction: none
7110 measured reflections
2692 independent reflections

$$
\begin{aligned}
& h=-11 \rightarrow 11 \\
& k=0 \rightarrow 6 \\
& l=0 \rightarrow 32
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.107$
$S=1.057$
2692 reflections
211 parameters
All H-atom parameters refined
$w^{\prime}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0391 P)^{2}\right.$ $+0.1889 P]$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.158 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.113 \mathrm{e}^{\AA^{-3}}$
Extinction correction: SHELXTL
Extinction coefficient: 0.011 (2)

Scattering factors from International Tables for Crystallography (Vol. C)
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$U_{\text {eq }}=(1 / 3) \sum_{i} \Sigma_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
x		=	$U_{\text {eq }}$
0.14028 (13)	0.3317 (3)	0.79384 (4)	0.0751 (4)
0.31302 (14)	0.7177 (2)	0.77498 (4)	0.0699 (4)
1/2	0.0847 (3)	3/4	0.0541 (4)
0.0534 (2)	-0.0708 (3)	0.68937 (5)	0.0558 (3)
0.2664 (2)	0.3174 (3)	0.68079 (6)	0.0621 (4)
0.0724 (2)	-0.1942 (3)	0.59639 (6)	0.0556 (4)
0.11620 (13)	-0.0389 (3)	0.64043 (5)	0.0445 (3)
0.21536 (14)	0.1617 (3)	0.63568 (5)	0.0477 (3)
0.2681 (2)	0.1981 (3)	0.58642 (7)	0.0621 (4)
0.2229 (2)	0.0411 (4)	0.54290 (7)	0.0682 (5)
0.1247 (2)	-0.1550 (4)	0.54779 (6)	0.0650 (4)
0.2357 (2)	0.3374 (3)	0.88909 (6)	0.0540 (4)
0.3270 (2)	0.4523 (4)	0.93123 (6)	0.0633 (4)
0.4149 (2)	0.6565 (4)	0.92126 (6)	0.0639 (4)
0.4133 (2)	0.7475 (3)	0.86931 (6)	0.0544 (4)
0.32189 (14)	0.6346 (3)	0.82708 (5)	0.0473 (3)
0.23165 (14)	0.4281 (3)	0.83721 (5)	0.0478 (3)

Table 2. Selected bond lengths (\AA)

$\mathrm{OI}-\mathrm{C} 12$	$1.371(2)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.430(2)$
$\mathrm{O} 2-\mathrm{Cl1}$	$1.369(2)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.419(2)$

Table 3. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

D-H. . A	D-H	H. A	D. A	D-H. A
$\mathrm{N} 2-\mathrm{HIN} 2 \ldots \mathrm{Ol}$	0.93 (3)	2.33 (2)	3.196 (2)	154 (2)
N - -H 2 N [. O^{1}	0.88 (2)	2.36 (2)	3.162 (2)	150 (2)
$\mathrm{Ol}-\mathrm{HlOl} \ldots \mathrm{Nl}^{\prime \prime}$	0.92 (2)	1.90 (2)	2.806 (2)	169 (2)
$\mathrm{O} 2-\mathrm{HlO} 2 \cdots \mathrm{O}^{\text {iii }}$	0.90 (2)	1.80 (2)	2.687 (2)	168 (2)
$\mathrm{O} 3-\mathrm{HlO3} \ldots \mathrm{~N} 2^{1 /}$	0.89 (2)	1.95 (2)	2.824 (2)	164 (2)

Symmetry codes: (i) $x, y-1, z ;$ (ii) $-x, y, \frac{3}{2}-z ;$ (iii) $x, 1+y, z ;$ (iv) $1-x . y, \frac{3}{2}-z$
The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different φ angle (0,88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Coverage of the unique set is over 99% complete. Crystal decay was monitored by repeating thirty initial frames at the end of data collection and analysing the duplicate reflections. It was found to be negligible.

The structure was solved by direct methods and refined by full-matrix least-squares techniques. All H atoms were located from a difference Fourier map and refined isotropically.

Data collection: SMART (Siemens, 1996a). Cell refinement: SAINT (Siemens, 1996b). Data reduction: SAINT. Program(s)
used to solve structure: SHELXTL (Sheldrick, 1996). Program(s) used to refine structure: SHELXTL. Molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995).

The authors thank the DST and CSIR, New Delhi, India, for financial support. The authors would also like to thank the Malaysian Government for research grant R\&D No. 190-9609-2801. KC thanks the Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HA1221). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. SI-19.
Hanessian, S., Gomtsyan, A., Simard, M. \& Roelens, S. (1994). J. Am. Chem. Soc. 116, 4495-4496.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SHELXTL Reference Manual. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996a). SMART Software Reference Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996b). SAINT Software Reference Manual. Version 4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1998). C54, 1649-1651

Fibleucin from Fibraurea chloroleuca Miers

Nor Aziyah Bakhari, ${ }^{a}$ Sam Teng Wah, ${ }^{a}$ Kandasamy Chinnakali, ${ }^{b} \dagger$ Hoong-Kun Fun ${ }^{b}$ and Ibrahim Abdul RaZaK ${ }^{b}$
${ }^{a}$ School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{b}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. E-mail: hkfun@usm.my
(Received 20 February 1998; accepted 18 May I998)

Abstract

In the title compound, 9-(3-furyl)-1,4,4a,5,9,10,10a,10b-octahydro-4-hydroxy-4a,10a-dimethyl-1,4-etheno-3 $\mathrm{H}, 7 \mathrm{H}$ -benzo[1,2- $c: 3,4-c^{\prime}$]dipyran-3,7-dione, $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{6}$, the pyran ring adopts a conformation intermediate between sofa and half-chair. All other six-membered rings are in the boat conformation. The furan ring is planar and is

^[\dagger On leave from: Department of Physics, Anna University, Chennai 600 025, India.]

equatorially attached. The crystal structure is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds.

Comment

The title compound, (I), was first isolated from the plant Fibraurea chloroleuca Miers and identified by Ito \& Furukawa (1969). It had been located in a crude methanol extract a few years earlier and it was found to possess antitumour and antifungal activity (Nakanishi et al., 1965). The present X-ray structure determination was carried out in order to elucidate the molecular conformation.

(I)

Most of the bond lengths and angles in the structure agree with those observed in the epoxy derivative of this compound, (-)-fibraurin (Dampawan et al., 1986). The fused rings, A and B, and the six-membered rings, D and E, formed by the lactone bridge, all adopt the boat conformation. Ring C is in a conformation which is intermediate between half-chair and sofa,

Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

